

Exercise 01 :

$\text{CaSO}_4 \cdot \frac{1}{2} \text{H}_2\text{O}$ construction plaster is produced in an oven by deshydratation of $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ gypsum at 400°C .

1- show that : $\Delta H^\circ(T) = \Delta H^\circ(T_0) + \int_{T_0}^T \Delta C^\circ p \, dT$

1-calculate the standard enthalpy of plaster formation reaction at 25°C then at 400°C . This reaction produces water in a vapor state.

Data :

ΔH_f at 25°C by KJ/mol : $\text{H}_2\text{O(g)}$: -241,83 ; gypsum (s) : -2021 ; plaster (s) : -1575.

$C^\circ p$ by J/mol.K : $\text{H}_2\text{O(g)}$: $29,59 + 11,38 \cdot 10^{-3}T$; gypsum (s) : 186 ; plaster (s) : 120

Exercise 02 :

The molar entropies of CaCO_3 calcite and CaCO_3 aragonite are 22.20 and 21.20 cal/K.mol at 25°C under 1 atm. Their enthalpies of formation under the same conditions are -288.45 and -288.49 Kcal/mol. The transition from aragonite to calcite occurs with an increase in volume of 2.75 ml.

1-Determine the change in free enthalpy for the transformation from aragonite to calcite at 25°C under 1 atm. Which of the two forms is more stable.

2- by how much should the pressure be increased, the temperature remains constant so that the other form becomes stable.