
Introduction  

equilibrium. The thermal equilibrium can be checked by measuring 

the temperature of the bodies. If the two bodies have the same 

temperatures then they are in thermal equilibrium. If several bodies 

are in thermal contact with each other, they will be in thermal 

equilibrium if they have the same temperature. 

We should also consider the internal thermal equilibrium of a 

thermodynamic system. In this case it is useful to understand the 

system as consisting of several parts that make up a set of multiple 

bodies in contact. The internal equilibrium means that there is no heat 

flows between the various parts of the system so that they all must 

have the same temperature. In summary, all parts of a system in 

thermal equilibrium have the same temperature. If the object of study 

is a mechanical system, the thermodynamic equilibrium will also 

comprise mechanical equilibrium. For example, two gases in a closed 

vessel and separated by a movable wall will be in mechanical 

equilibrium if the wall is at rest. In this situation, the pressure is the 

same on both sides of the wall. Generally speaking, the mechanical 

equilibriumof a fluid, in the absence of external forces, requires no 

pressure gradient inside the fluid. Thus all parts of a system in 

mechanical equilibrium have the same pressure, in the absence of 

external forces. 

First Law of Thermodynamics 



The Joule principle, or principle of conservation of energy, is the first 

law of thermodynamics. It was established by several scientists, but 

mostly by Mayer and Joule, who assumed that the various forms of 

work could be converted into one another and, moreover, that all of 

them could be dissipated as heat. Although it seems quite obvious that 

the work can be transformed into heat, for example, by friction, one 

can not conclude that the work dissipated always produce the same 

amount of heat. It is necessary to experimentally verify such a law, 

which is summarized in the determination of the mechanical 

equivalent of heat. This determination was in fact performed by 

Mayer and exhaustively by Joule by numerous experiments. By 

assuming that a certain amount of work always turns into the same 

amount of heat, they were adopting the conservation of energy. 

The second law of thermodynamics 

The second law of thermodynamics must be understood as consisting 

of three parts. The first one leads to the definition of absolute 

temperature and entropy. Combined with the principle of conservation 

of energy, it allows us to set up the thermodynamic space and 

introduce the fundamental relation of systems in equilibrium. The 

second part consists of the form postulated by Gibbs for the principle 

of maximum entropy. It leads us to the property of convexity of the 

entropy and the conditions of stability of thermodynamic systems in 

equilibrium. These two parts refer only to equilibriumstates and are 

represented by the Carnot principle and by the Clausius-Gibbs 



principle, respectively. These two principles altogether form the 

second law of thermodynamics for equilibrium systems. The third part 

of the second law of thermodynamics refers to the time evolution of 

thermodynamic systems and has to do with the growth of entropy in 

spontaneous and irreversible processes. It therefore corresponds to the 

dynamic aspect of the principle of maximum entropy.We emphasize, 

however, that this aspect is not used explicitly, since we treat only 

systems in thermodynamic equilibrium. In contrast, the static aspect 

of the maximum entropy principle is used explicitly in the form given 

by the Clausius-Gibbs principle. When the initial and final states of an 

irreversible process are made up of equilibrium states a close 

relationship exists between the two aspects, which we analyze below. 

Third law of thermodynamics 

the Nernst postulate together with the Planck postulate, which we call 

the Nernst- Planck principle or the third law of thermodynamics, tells 

us that S (T) pass to be null when the temperature pass to be null. 

 

Heat capacity 

∆𝑢 = 𝑐𝑣𝑑𝑇     ⇒ (
𝜕𝑢

𝜕𝑇
)

𝑣
= 𝑐𝑣 

∆𝐻 = 𝑐𝑝𝑑𝑇      ⇒  (
𝜕𝐻

𝜕𝑇
)

𝑝
= 𝑐𝑝 

Mathematical reminder: 



𝑐 = 𝑐(𝑥, 𝑦, 𝑧) 

𝑑𝑐 = (
𝜕𝑐

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑐

𝜕𝑦
) 𝑑𝑦 + (

𝜕𝑐

𝜕𝑧
) 𝑑𝑧 

The differential of internal energy heat and entropy 

𝑢 = 𝑄 + 𝑊 

𝑑𝑢 = 𝑑𝑄 + 𝑑𝑊 

𝑑𝑠 = 𝑑𝑖𝑠 + 𝑑𝑒𝑠 

𝑑𝑠 =
𝜕𝑄

𝑇
 

𝜕𝑄 = 𝑇𝑑𝑠 = 𝑇𝑑𝑖𝑠 + 𝑇𝑑𝑒𝑠 

𝑑𝑢 = 𝑇𝑑𝑠 + 𝑑𝑊 

𝑑𝑤 = −𝑝𝑑𝑣 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 

(
𝜕𝑢

𝜕𝑠
)

𝑣
= 𝑇; (

𝜕𝑢

𝜕𝑣
)

𝑠
= 𝑝 and (

𝜕𝑇

𝜕𝑣
)

𝑝
= − (

𝜕𝑝

𝜕𝑠
)

𝑇
 

− (
𝜕𝑇

𝜕𝑣
)

𝑠
= (

𝜕𝑝

𝜕𝑠
)

𝑣
 

(
∂𝑢

∂𝑣
)

𝑇
= 𝑇 (

∂𝑠

∂𝑣
)

𝑇
− 𝑃 

- The differential of heat (Q): 

𝑑𝑢 = ∂Q + ∂w 

∂Q = du + ∂w 



∂Q = CvdT + pdv 

∂Q = CvdT + (
RT

V
) dv 

The differential of entropy 

𝑑𝑠 = (
∂Q

𝑇
) 

𝑑𝑠 = 𝐶𝑣 (
𝑑𝑇

𝑇
) +

𝑅

𝑉
𝑑𝑣 

The differential of enthalpie 

𝐻 = 𝑢 + 𝑝𝑣 

𝑑𝐻 = 𝑑𝑢 + 𝑑𝑝𝑣 

𝑑𝐻 = 𝑑𝑢 + 𝑣𝑑𝑝 + 𝑝𝑑𝑣 

𝑑𝐻 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 + 𝑣𝑑𝑝 + 𝑝𝑑𝑣 

𝑑𝐻 = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 

(
∂H

∂s
)

p
= T; (

∂H

∂p
)

s

= v and (
∂T

∂p
)

s

= (
∂v

∂s
)

p
 

The differential of Gibbs free energy (free enthalpy) 

𝐺 = 𝐻 − 𝑇𝑆 

𝑑𝐺 = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 − 𝑇𝑑𝑠 − 𝑠𝑑𝑇 

𝑑𝐺 = 𝑣𝑑𝑝 − 𝑠𝑑𝑇 

(
𝜕𝐺

𝜕𝑝
)

𝑇

= 𝑣;  (
𝜕𝐺

𝜕𝑇
)

𝑝
= −𝑠 𝑎𝑛𝑑 (

𝜕𝑣

𝜕𝑇
)

𝑝
= − (

𝜕𝑠

𝜕𝑝
)

𝑇

 



Free energy of helmoholtz (F=A) 

𝐴 = 𝑈 − 𝑇𝑆 

𝐴 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 − 𝑇𝑑𝑠 − 𝑠𝑑𝑇 

𝑑𝐴 = −𝑝𝑑𝑣 − 𝑠𝑑𝑇 

⇒ (
𝜕𝑠

𝜕𝑣
)

𝑇
=  (

𝜕𝑝

𝜕𝑇
)

𝑣
 

 

A- Thermodynamics functions for closed systems with irreversible 

transformation and variable composition: 

In this case we should take the entropy production 𝑇𝑑𝑠 into consideration and this 

for chemical reaction  

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 + ∑ 𝒰𝑖𝑑𝑛𝑖 − 𝑇𝑑𝑖𝑠 

𝑑𝐻 = 𝑇𝑑𝑠 + 𝑉𝑑𝑝 + ∑ 𝒰𝑖𝑑𝑛𝑖 − 𝑇𝑑𝑖𝑠 

𝑑𝐴 = −𝑠𝑑𝑇 − 𝑝𝑑𝑉 + ∑ 𝒰𝑖𝑑𝑛𝑖 − 𝑇𝑑𝑖𝑠 

𝑑𝐺 = −𝑠𝑑𝑇 + 𝑉𝑑𝑝 + ∑ 𝒰𝑖𝑑𝑛𝑖 − 𝑇𝑑𝑖𝑠 

 

B- thermodynamic functions for closed system with 

reversible transformation and heterogenous composition : 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

 



𝑑𝐻 = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

 

𝑑𝐴 = −𝑠𝑑𝑇 − 𝑝𝑑𝑣 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

 

𝑑𝐺 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

 

Where : 

µ𝑖  : is the chemical potential ; 

𝑛𝑖  : is the mole number of the constant i. 

Chemical potential 

For pure ideal systems, the chemical potential is expressed 

by : 

µ𝑖 = µ°𝑖(𝑇0, 𝑝0) + 𝑅𝑇𝑙𝑛 𝑥𝑖 

Where 𝑇0 𝑎𝑛𝑑 𝑝0 are the reference temperature and pressure, 

and 𝑋𝑖 is the mole fraction. 

It can also be defined in terms of the concentration of species 

i : 

𝑐𝑖 =
𝑁𝑖

𝑣
            

µ𝑖 = µ°𝑖(𝑇0, 𝑣0) + 𝑅𝑇𝑙𝑛𝑐𝑖  

For non ideal systems, we use an activity 



µ𝑖 = µ°𝑖(𝑇0, 𝑝0) + 𝑅𝑇𝑙𝑛𝛾𝑖𝑋𝑖 

µ𝑖 = µ°𝑖 + 𝑅𝑇𝑙𝑛𝑎𝑖 

 

c- Thermodynamic functions for closed systems with 

irreversible transformation and variable composition 

in this case we should take the entropy production into 

consideration and this for the chemical reactions : 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

− 𝑇𝑑𝑖𝑠 

𝑑𝐻 = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

− 𝑇𝑑𝑖𝑠 

𝑑𝐴 = −𝑠𝑑𝑡 + 𝑣𝑑𝑝 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

− 𝑇𝑑𝑖𝑠 

𝑑𝐺 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝 + ∑ µ𝑖𝑑𝑛𝑖

𝑛

𝑖=1

− 𝑇𝑑𝑖𝑠 

 

Suite: potential 

Chemical potential of Gibbs free energy (G) is the partial 

molar free energy (𝐺𝑖) 

µ𝑖 = 𝐺𝑖 = (
𝜕𝐺

𝜕𝑛𝑖
)

𝑇,𝑃

 



𝐺 = ∑ µ𝑖𝑛𝑖 

Chemical potential of Helmholtz free energy (A) is  

µ𝑖 = 𝐴𝑖 = (
𝜕𝐹

𝜕𝑛𝑖
)

𝑇,𝑣
 is the partial molar free energy  

The chemical potential of internal energy (𝑢) is the partial 

molar internal energy 𝑢𝑖 

µ𝑖 = 𝑢𝑖 = (
𝜕𝑢

𝜕𝑛𝑖
)

𝑠,𝑣

 

The chemical of enthalpy H is the partial molar enthalpy 𝐻𝑖 

µ𝑖 = 𝐻𝑖 = (
𝜕𝐻

𝜕𝑛𝑖
)

𝑠,𝑝

 

Usually A and G are used to calculate 𝒰𝑖 because it is 

possible to control the temperature and the pressure (𝐺 =

𝐺(𝑝, 𝑇) 𝑎𝑛𝑑 𝐴 = 𝐴(𝑣, 𝑇) 

Chapter 02:Thermodynamic of pure species 

 

Pure substance: is a substance with homogenous and stable 

chemical composition. For example liquid water, a mixter of 

ice/water or water/vapor. Also, the air is a pure substance. 

 All pure substances can be a solid, liquid or gas. A solid 

substance has different allotropic forms. For example, carbon 

and diamant. 



Variance of a system (𝜑): is it defined with the following 

equation: 

𝜑 = 𝑐 + 2 − 𝐹 

Where: 

C: is number of constituent; 

F: is number of phases 

If 𝑐 = 1, 𝐹 = 1  ⇒ 𝜑 = 2; so we need two variables to 

describe the system 

If 𝑐 = 1, 𝐹 = 2  ⇒ 𝜑 = 1 ; so we need just one variable to 

describe the system 

If 𝑐 = 1, 𝐹 = 3  ⇒ 𝜑 = 0 ; all variables are constants 

Example heating ice from (-18°c to 20°c) the temperature 

increase from 18°c the ice begin to melt and the temperature 

remains constant. At this point the liquid temperature begin 

to rise. 

In this case, we have two phases and one constant (water), in 

this case 𝑐 = 1, 𝐹 = 2  , 𝜑 = 1  we can describe the system 

using only one variable (temperature) 
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The saturated temperature (the boiling point) 

It increases as pressure increases 

Platting the saturation pressure as a function of 

saturation temperature in the T-p plane. This is the S0-

called vapor pressure curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cretical point Pc 

P 

Compressed liquid 

Vapor pressure curve 

Vapor superheated 

T 

Tc 



Sketch of T-V plane: 

 

 

 

 

 

 

 

 

 

 

 

Sketch of p-v plan: 
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Ideal gas: for ideal gases, we have 𝑃𝑉 = 𝑛𝑅𝑇 

The calorie equation is given on form: 𝑢 = 𝑢(𝑇) 

We can specify h for ideal gas 

 𝐻 = 𝑢 + 𝑃𝑉 ⟹ 𝐻 = 𝑢(𝑇) + 𝑅𝑇                                      (1) 

Thus the enthalpy of an ideal gas is a function of T only 

∆𝐻 = (𝐶𝑝∆𝑇)
𝑝

⟹ (
𝜕𝐻

𝜕𝑇
)

𝑝
= 𝐶𝑝(𝑇) 

𝑑𝐻 = 𝐶𝑝𝑑𝑇 

∆𝑢 = (𝐶𝑣∆𝑇)𝑣 ⟹ (
𝜕𝑢

𝜕𝑇
)

𝑣
= 𝐶𝑣(𝑇) 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 

(1) ⟹ 𝐻 = 𝑢(𝑇) + 𝑅𝑇 

𝑑𝐻 = 𝑑𝑢(𝑇) + 𝑅𝑑𝑇 

𝐶𝑝(𝑇)𝑑𝑇 = 𝐶𝑉(𝑇)𝑑𝑇 + 𝑅𝑑𝑇 

𝐶𝑝(𝑇) − 𝐶𝑉(𝑇) = 𝑅 

If we have a mixture of two ideal gases A and B 

The pressure of the mixture equal to P, where 𝑃 = 𝑃𝐴 + 𝑃𝐵 



𝑃𝐴 = (
𝑛𝐴

𝑛𝐴+𝑛𝐵
) . 𝑃  and  𝑃𝐵 = (

𝑛𝐵

𝑛𝐴+𝑛𝐵
) . 𝑃 

𝑋𝐴 = (
𝑛𝐴

𝑛𝐴 + 𝑛𝐵
) 

XA is the molar ratio of A in the mixture 

Calorically perfect:  

A calorically perfect gas has constant specific heat 

𝑑𝑢

𝑑𝑇
= 𝐶𝑉 ⇒ 𝑢 = ∫ 𝐶𝑣𝑑𝑡

𝑇

𝑇0

 

𝑢 = 𝑢0 + 𝐶𝑣(𝑇 − 𝑇0)…………..(2) 

(2) ⟹ 𝑢 + 𝑃𝑉 = 𝑢0 + 𝐶𝑣𝑇0 + 𝑃𝑉 

𝑢 + 𝑃𝑉 = 𝐻; 𝑃𝑉 = 𝑅𝑇 

𝐻 = 𝑢0 + 𝐶𝑣𝑇 − 𝐶𝑣𝑇0 + 𝑅𝑇 + 𝑅𝑇0 − 𝑅𝑇0 

𝐻 = 𝑢0 + 𝑅𝑇0 + (𝐶𝑣 + 𝑅)𝑇 − (𝐶𝑣𝑇0 + 𝑅𝑇0) 

𝑢0 + 𝑅𝑇0 = 𝐻0  ;  (𝐶𝑣 + 𝑅) = 𝐶𝑝 ;     (𝐶𝑣𝑇0 + 𝑅𝑇0) = 𝐶𝑃𝑇0 

𝐻 = 𝐻0 + 𝐶𝑝𝑇 − 𝐶𝑝𝑇0 

𝐻(𝑇) = 𝐻0 + 𝐶𝑝(𝑇 − 𝑇0) 

Calorically imperfect gas: 

𝑢 = 𝑢(𝑇) 

𝐶𝑣 = 𝐶𝑣(𝑇) 

𝐻 = 𝐻(𝑇) 



𝐶𝑝 = 𝐶𝑝(𝑇) 

𝑢(𝑇) = 𝑢0 + ∫ 𝐶𝑣(𝑇)𝑑𝑇
𝑇

𝑇0

 

And 

𝐻(𝑇) = 𝐻0 + ∫ 𝐶𝑝(𝑇)𝑑𝑇
𝑇

𝑇0

 

Real gases: 

A real gases have repulsive and attractive forces between 

molecules at low molecular volume and intermolecular forces 

can often be neglected 

𝑃𝑉 = 𝑅𝑇 [1 +
𝐵

𝑉̅
+

𝐶

𝑉̅2
+ ⋯ ] 

𝑉̅ = 𝑉𝑚= 
𝑉

𝑛
 

𝑃𝑉̅= 𝑅𝑇[1 + 𝐵𝑃̀𝐶̀𝑃2 + ⋯ ] 

C and B are coefficients  

Vander Waals equation: 

(𝑃 +
𝑎

𝑉̅2
) (𝑉̅ − 𝑏) = 𝑅𝑇 

𝑉̅ = 𝑉𝑚 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 

𝑃 +
𝑎

𝑉2 Internal pressure 

(𝑉̅ − 𝑏)    Excluded volume 



Fugality: the fugality function can define phase equilibrium. 

For an ideal gas, the fugality of a species in an ideal gas 

mixture is equal to its partial pressure 

𝑓𝑖

𝑃
= 1   (For pure species i); 

𝑓𝑖

𝑦𝑖𝑝
= 1 (For species i in mixtures) 

Where 𝐹𝑖  represent the fugality of species i in a mixture and 

𝑦𝑖 is the gas phase fraction of species i. 

𝑃𝑉𝑖

𝑛𝑅𝑇
= 1 and 

𝐹𝑖

𝑝
= 1 

𝑃𝑉𝑖

𝑛𝑅𝑇
=

𝐹𝑖

𝑝
 ⇒ (

𝜕𝐹

𝜕𝑃
)

𝑇,𝑦𝑖

=
𝑉𝑖

𝑛𝑅𝑇
 

For a mixture, the departure function of Gibbs energy, which 

is the difference between the partial Gibbs energy in the real 

state and in an ideal gas state, is related to the fugality 

function by 𝑢𝑖 − 𝑢𝑖𝑖𝑑𝑒𝑎𝑙 = ∆𝑢(𝑟𝑒𝑎𝑙 − 𝑖𝑑𝑒𝑎𝑙) 

𝐺𝑖 − 𝐺°𝑖 = 𝑢𝑖𝑟𝑒𝑎𝑙 = 𝑢𝑖𝑖𝑑𝑒𝑎𝑙 = 𝑅𝑇𝑙𝑛 
𝐹𝑖

𝑦𝑖𝑝°
 

From the equation above, we define the fugality coefficient 

of species i, ℒ𝑖 in a mixture by: 

ℒ𝑖 =
𝐹𝑖

𝑦𝑖𝑝
, {

𝑦𝑖 = 1 𝑖𝑓 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑜𝑛𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
𝑦𝑖 ≠ 1 𝑖𝑓 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑎 𝑚𝑖𝑥𝑡𝑢𝑟𝑒

 

ℒ𝑖 is a measure of deviation from the ideal gas mixture 

behavior, and unity an ideal gas mixture. 



The fugality coefficient may be determined from 

compressibility factor 𝒵 = (
𝑃𝑉

𝑅𝑇
) data at constant temperature 

and composition chemical potential for ideal gas:  

𝑢𝑖 = 𝑢° + 𝑅𝑇𝑙𝑛 (
𝑃

𝑦𝑖𝑝°
) 

The joule expansion 

 

 

                        (a) (b) 

(a) A gas is kept to one part of vessel by a partition, the other 

part being evacuated. 

(b) The partition is removed and the gas expands irreversibly 

to fill the whole vessel of complete isolation. 

Joule expansion is also called a “free expansion”. 

Since 𝑑𝑄 = 𝑑𝑤 = 0; we have 𝑑𝑢 = 0 or 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 

(
𝜕𝑢

𝜕𝑇
)

𝑣
= 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑣
= 𝐶𝑣 

(
𝜕𝑢

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑆

𝜕𝑉
) − 𝑃 = 𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
− 𝑃 

 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 = 0 



𝑇𝑑𝑠 = 𝑝𝑑𝑣 

∆𝑠 =
𝑃

𝑇
∆𝑣 

∆𝑠 = ∫
𝑝

𝑇
𝑑𝑣

𝑉2

𝑉1

 

For the perfect gas this becomes 𝑃𝑉 = 𝑛𝑅𝑇 

𝑝

𝑇
=

𝑅

𝑉
 

∆𝑠 = ∫
𝑅

𝑉
𝑑𝑣 = 𝑅 𝑙𝑛

𝑉2

𝑉1

𝑉2

𝑉1

 

∆𝑠 = 𝑅𝑙𝑜𝑔
𝑉2

𝑉1
 

The joule – Kelvin expansion (Joule-Thomson) 

A gas is forced through a porous plug or a throttle valve 

under conditions of thermal isolation from the surround dings 

 

 

 

 

In passing through the plug, the gas expands and the pressure 

drops from P1 to P2. 

The pressure on either side are kept constant 

P1 P2 



BUT: 

𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 

(
𝜕ℎ

𝜕𝑇
)

𝑃
= 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑃
= 𝐶𝑃 

(
𝜕ℎ

𝜕𝑃
)

𝑇
= 𝑇 (

𝜕𝑆

𝜕𝑃
)

𝑇
+ 𝑉 … … … … … … … … (1) 

(
𝜕𝑆

𝜕𝑃
)

𝑇
= (

𝜕𝑉

𝜕𝑇
)

𝑃
… … … … … … … … … … … . (2) 

(
𝜕ℎ

𝜕𝑃
)

𝑇
= 𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
+ 𝑉 

 

 

Thermodynamic properties of condensed phases 

A condensed phase consists of a liquid (very poorly 

compressible fluid) or a solid (quasi-incompressible) under 

the usual conditions of temperature and pressure and taking 

into account the quasi-constant V0 nature of the condensed 

phase. 

The thermo-elastic coefficient can be written 

isobaric.Expansion.Coefficient: 

𝛼 =
1

𝑉0
(

𝜕𝑉

𝜕𝑇
)

𝑝
 

Isothermal compressibility coefficient  



𝐵 =
−1

𝑉0
(

𝜕𝑉

𝜕𝑝
)

𝑇

 

A condensed phase is slightly expandable (𝛼 ≈ 0) and not 

very compressible (𝛽 ≈ 0) 

𝑑𝑣 = (
𝜕𝑣

𝜕𝑇
)

𝑝
𝑑𝑇 + (

𝜕𝑣

𝜕𝑝
)

𝑇

𝑑𝑝 

𝑑𝑣 = 𝛼𝑣0𝑑𝑇 − 𝛽𝑣0𝑑𝑝 

𝑑𝑣 = 𝑣0(𝛼𝑑𝑇 − 𝛽𝑑𝑝) ≈ 0 

Chapter 03    Physical equilibrium 

Phase equilibrium 

A system of two phases is in equilibrium, if it has the 

following conditions: 

𝑇𝛼 = 𝑇𝛽 = 𝑇;           𝑒𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚  

𝑃𝛼 = 𝑃𝛽 = 𝑃;           𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 

𝐺𝑚
𝛼 = 𝐺𝑚;               𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 

T: Temperature 

P: Pressure 

G: Free enthalpy 

Taking this reaction 𝛼 ⇌ 𝛽 

∆𝐺 = 𝐺𝑚(𝑝,𝑇)

𝛽
− 𝐺𝑚(𝑝,𝑇)

𝑇 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑤ℎ𝑒𝑟𝑒 𝑝

= ℱ(𝑇) 

𝛽  

𝑇𝛽, 𝑝𝛽 

𝛼 

𝑇𝛼, 𝑝𝛼 



The clapeyron equation: 

- Under isothermal and isotonic conditions various 

phases of a compound can coexist at phase equilibrium. 

- A compound can be at various phases under suitable 

pressure and temperature. 

- Chemical potentials of a species in vapor and liquid 

phases are equal at phase equilibrium must be zero. 

𝑢𝑣𝑎𝑝(𝑇, 𝑝) = 𝑢𝑙𝑖𝑞(𝑇, 𝑝) 

𝑣𝑎𝑝: 𝛼 

𝑙𝑖𝑞: 𝛽 

𝑢𝛼(𝑇, 𝑝) = 𝑢𝛽(𝑇, 𝑝) 

(
𝜕𝑢𝛼

𝜕𝑇
)

𝑇
𝑑𝑇 + (

𝜕𝑢𝛼

𝜕𝑝
)

𝑝

𝑑𝑝 = (
𝜕𝑢𝛽

𝜕𝑇
)

𝑝

𝑑𝑇 + (
𝜕𝑢𝛽

𝜕𝑝
)

𝑇

𝑑𝑝 

𝑢𝛼 = 𝐺𝛼
̅̅̅̅  

𝑑𝐺 = 𝑣𝑑𝑝 − 𝑆𝑑𝑡 

(
𝜕𝐺

𝜕𝑇
)

𝑝
= −𝑆  ⇒ (

𝜕𝐺̅

𝜕𝑇
)

𝑝

= −𝑆𝛼
̅̅ ̅  ⇒  (

𝜕𝐺̅

𝜕𝑝
)

𝑇

= 𝑉𝛼̅ 

𝐺𝛼
̅̅̅̅ = 𝐺𝐵

̅̅̅̅  

−𝑆𝛼
̅̅ ̅𝑑𝑇 + 𝑉𝛼̅𝑑𝑝 = −𝑆𝛼

̅̅ ̅𝑑𝑇 + 𝑉𝐵
̅̅ ̅𝑑𝑝 

−𝑆𝛼
̅̅ ̅𝑑𝑇 + 𝑆𝛽

̅̅ ̅𝑑𝑇 = 𝑉𝛽
̅̅ ̅𝑑𝑝 − 𝑉𝛼̅𝑑𝑝 

(𝑆𝐵
̅̅ ̅ − 𝑆𝛼)̅̅̅̅̅𝑑𝑇 = (𝑉𝛽

̅̅ ̅ − 𝑉𝛼̅)𝑑𝑝 



𝑑𝑝

𝑑𝑇
=

(𝑆𝛽
̅̅ ̅ − 𝑆𝛼)̅̅̅̅̅

(𝑉𝛽
̅̅ ̅ − 𝑉𝛼̅)

=
∆𝑆̅̅̅̅

∆𝑉̅̅ ̅̅
 

∆𝐺̅̅̅̅ = ∆𝐻̅̅ ̅̅ − 𝑇∆𝑆̅̅̅̅ = 0 at equilibrium 

∆𝑆̅̅̅̅ =
∆𝐻̅̅ ̅̅

𝑇
 

𝑑𝑃

𝑑𝑇
=

△𝐻̅̅̅̅̅

𝑇△𝑉̅̅ ̅̅
    clapeyron equation 

△ 𝐻̅̅ ̅̅
𝑓̅𝑢𝑠𝑖𝑜𝑛 > 0

△ 𝐻̅̅ ̅̅ ̅
𝑉𝑎𝑝 > 0

△ 𝐻̅̅ ̅̅
𝑠̅𝑢𝑏 > 0

}  𝑎𝑙𝑤𝑎𝑦𝑠 

Clausius-clapeyron equation 

Solid-Vapor equilibrium 

𝑑𝑃

𝑑𝑇
=

∆𝐻̅̅ ̅̅ 𝑠−𝑔

𝑇(𝑣𝑔−𝑉𝑆)
  ∫ 𝑥𝑛𝑑𝑥 =

𝑥𝑛+1

𝑛+1
+ 𝜀  𝑇−2𝑑𝑡 =

𝑇−2+1

−2+1
= −

1

𝑇
  

Solid-Liquid equilibrium  

𝑑𝑃

𝑑𝑇
=

∆𝐻̅̅ ̅̅
𝑡𝑠

𝑇(𝑣𝑡 − 𝑉𝑠)
 

Liquid-Vapor equilibrium n=1 mole 

𝑑𝑃

𝑑𝑇
=

∆𝐻̅̅ ̅̅ 𝐿𝑔

𝑇(𝑉𝑔−𝑉𝐿)
  𝑉𝑔 ≫ 𝑉2 

𝑉𝑔 =
𝑅𝑇

𝑃
   𝑉𝑔 ≫> 𝑉𝑠 1𝑉 ≈ 𝑉𝑔 



𝑑𝑃

𝑑𝑇
=

∆𝐻̅̅ ̅̅

𝑅𝑇2
. 𝑃   ∫

𝑑𝑇

𝑇2
= [−

1

𝑇
] 

𝑑𝑃

𝑃
=

∆𝐻̅̅ ̅̅

𝑅𝑇2
. 𝑑𝑇 ⇒ ln

𝑃2

𝑃1
=

− △ 𝐻̅̅ ̅̅ ̅

𝑅
(

1

𝑇2
−

1

𝑇1
) 

 Claussuis-clapeyron equation 

Phase equilibration of binary mixtures: 

- Many minerals are homogenous solid binary mixtures 

such as mercury and silver; 

- Alocohol is usually found in association with water, 

forming a homogenous binary mixture. 

Dilutes mixture: 

The chemical potential of a solute is given by the following 

expression: 

𝑢1 = 𝑢°1 + 𝑅𝑇𝑙𝑛 (1 − 𝑥) 

𝑢2 = 𝑢°2 + 𝑅𝑇𝑙𝑛 𝑥 

The coexistence of two phases in binary mixture is described 

by a linear segment of 𝑔(𝑝, 𝑥)or 𝑔′(𝑇, 𝑥). 

Thermodynamic equilibrium: 

For a mixture of two components, the condition of 

thermodynamic equilibrium is: 



{

𝑇𝐴 = 𝑇𝐵 

𝑃𝐴 = 𝑃𝐵

𝑢1𝐴 = 𝑢1𝐵

𝑢2𝐴𝑢2𝐵

⇒ 𝑢1 𝑎𝑛𝑑 𝑢2 𝑎𝑟𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 1 𝑎𝑛𝑑 2 

A and B are two phases for example (liquiduap) 

Condensation and boiling lines: 

 

 

 

 

 

 

 

 Water and methol mixture 

 

𝑑𝐺 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 + 𝑢1𝑑𝑁1 + 𝑢2𝑑𝑁2 

N1 and N2 are numbers of moles of components 1 and 2 

𝑆 =
𝜕𝐺

𝜕𝑇
;             𝑣 =

𝜕𝐺

𝜕𝑃
;                  𝑢1 =

𝜕𝐺

𝜕𝑁1
;𝑢2 =

𝜕𝐺

𝜕𝑁2
 

Application of thermodynamic equilibration for distillation 

process 

50 

100 

90 

80 

70 

60 

water 
methanol 0.2 0.8 0.6 0.4 1 

Condensation line 

boiling line 

g T 

X 

0.1 

P (upa) 

0.2 0.8 0.6 0.4 1 

Condensation line 

boiling line 

g 0.35 



It is used for determining the number of theorical plates in 

distillation columns 

Chapter 04  Chemical equilibrium 

The condition of chemical equilibration is dG=0 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑣𝑑𝑝 + ∑ 𝑢𝑖𝑑𝑛𝑖 = 0

𝑘

𝑖=1

 

⇒ ∑ 𝑢𝑖𝑑𝑛𝑖 = 0 

𝑢𝑖 = 𝑢°𝑖 + 𝑅𝑇𝑙𝑜𝑔𝜑 

𝜑𝑖 =
ℒ𝑖

𝑝0
 

ℒ𝑖 is fugalitycoefficient 

The standard chemical potential of Gibbs is given by 

the following equation : 

∆µ° = ∆𝐺°𝑅 = 𝑅𝑇 ln 𝐾𝑎 

𝑤ℎ𝑒𝑟𝑒: 

Ka is the equilibrium constant. 

 

𝑘𝑎 = ∏ (𝜑)
𝑅

𝑖=1
𝐷𝑖  

Di is the stocheometric coefficient of component i 

From the previous equations, we can deduce that : 



∆𝐺°𝑅 = −𝑅𝑇 ln 𝑘𝑎 = ∆𝐻°𝑅 − 𝑇∆𝑆°𝑅 

ln 𝑘𝑎 =
∆𝑆°𝑅

𝑅
−

∆𝐻°𝑅

𝑅𝑇
 

Example ; 

3

2
𝐻2 +

1

2
𝑁2 = 𝑁𝐻3 

𝑎𝐴 + 𝑏𝐵 𝑐𝐶 

𝐾𝑎 =
ℓ𝐶

𝑐 . ℓ𝐷
𝑑

ℓ𝐴
𝑎. ℓ𝐵

𝑏
 

 

 


