Introduction
equilibrium. The thermal equilibrium can be checked by measuring

the temperature of the bodies. If the two bodies have the same
temperatures then they are in thermal equilibrium. If several bodies
are in thermal contact with each other, they will be in thermal
equilibrium if they have the same temperature.

We should also consider the internal thermal equilibrium of a
thermodynamic system. In this case it is useful to understand the
system as consisting of several parts that make up a set of multiple
bodies in contact. The internal equilibrium means that there is no heat
flows between the various parts of the system so that they all must
have the same temperature. In summary, all parts of a system in
thermal equilibrium have the same temperature. If the object of study
IS a mechanical system, the thermodynamic equilibrium will also
comprise mechanical equilibrium. For example, two gases in a closed
vessel and separated by a movable wall will be in mechanical
equilibrium if the wall is at rest. In this situation, the pressure is the
same on both sides of the wall. Generally speaking, the mechanical
equilibriumof a fluid, in the absence of external forces, requires no
pressure gradient inside the fluid. Thus all parts of a system in
mechanical equilibrium have the same pressure, in the absence of
external forces.

First Law of Thermodynamics



The Joule principle, or principle of conservation of energy, is the first
law of thermodynamics. It was established by several scientists, but
mostly by Mayer and Joule, who assumed that the various forms of
work could be converted into one another and, moreover, that all of
them could be dissipated as heat. Although it seems quite obvious that
the work can be transformed into heat, for example, by friction, one
can not conclude that the work dissipated always produce the same
amount of heat. It is necessary to experimentally verify such a law,
which is summarized in the determination of the mechanical
equivalent of heat. This determination was in fact performed by
Mayer and exhaustively by Joule by numerous experiments. By
assuming that a certain amount of work always turns into the same
amount of heat, they were adopting the conservation of energy.

The second law of thermodynamics

The second law of thermodynamics must be understood as consisting
of three parts. The first one leads to the definition of absolute
temperature and entropy. Combined with the principle of conservation
of energy, it allows us to set up the thermodynamic space and
introduce the fundamental relation of systems in equilibrium. The
second part consists of the form postulated by Gibbs for the principle
of maximum entropy. It leads us to the property of convexity of the
entropy and the conditions of stability of thermodynamic systems in
equilibrium. These two parts refer only to equilibriumstates and are

represented by the Carnot principle and by the Clausius-Gibbs



principle, respectively. These two principles altogether form the
second law of thermodynamics for equilibrium systems. The third part
of the second law of thermodynamics refers to the time evolution of
thermodynamic systems and has to do with the growth of entropy in
spontaneous and irreversible processes. It therefore corresponds to the
dynamic aspect of the principle of maximum entropy.We emphasize,
however, that this aspect is not used explicitly, since we treat only
systems in thermodynamic equilibrium. In contrast, the static aspect
of the maximum entropy principle is used explicitly in the form given
by the Clausius-Gibbs principle. When the initial and final states of an
irreversible process are made up of equilibrium states a close
relationship exists between the two aspects, which we analyze below.
Third law of thermodynamics

the Nernst postulate together with the Planck postulate, which we call
the Nernst- Planck principle or the third law of thermodynamics, tells

us that S (T) pass to be null when the temperature pass to be null.

Heat capacity
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Mathematical reminder:
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The differential of internal energy heat and entropy
u=Q+W
du =dQ + dW
ds =d;s+d,s
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- The differential of heat (Q):

du = 0Q + dw
0Q = du+ dw



dQ = CvdT + pdv
RT
9Q = CvdT + (7) dv

The differential of entropy
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The differential of enthalpie
H=u+pv
dH = du + dpv
dH = du + vdp + pdv
dH = Tds — pdv + vdp + pdv
dH = Tds + vdp
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The differential of Gibbs free energy (free enthalpy)
G=H-TS
dG = Tds + vdp — Fds — sdT
dG = vdp — sdT
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Free energy of helmoholtz (F=A)
A=U-TS

A = Tds — pdv — Tds — sdT

dA = —pdv — sdT

- (3), = ),

A- Thermodynamics functions for closed systems with irreversible
transformation and variable composition:

In this case we should take the entropy production T'ds into consideration and this
for chemical reaction

du =Tds — pdv + z U;dn; — Td;s
dH = Tds + Vdp + z Uydn; — Tdys
dA = —sdT — pdV + z U;dn; — Td;s
dG = —sdT + Vdp + z Uydn; — Tdys

B- thermodynamic functions for closed system with
reversible transformation and heterogenous composition :

n
du =Tds — pdv + Z w;dn;

=1



n
dH = Tds + vdp + Z u;dn;

=1

n
dA = —sdT — pdv + Z w;dn;

=1

n
dG = —sdT + vdp + Z u;dn;
i=1
Where :
I; . is the chemical potential ;
n; . is the mole number of the constant i.
Chemical potential

For pure ideal systems, the chemical potential is expressed
by :
W = u°(To, po) + RTIn x;

Where T, and p, are the reference temperature and pressure,
and X; is the mole fraction.

It can also be defined in terms of the concentration of species
I

c; = —
Y

W = 1 (To, vo) + RTIng;

For non ideal systems, we use an activity



W = 1i(To, po) + RTIny;X;
w; = u°; + RTlna;

c- Thermodynamic functions for closed systems with
irreversible transformation and variable composition

in this case we should take the entropy production into
consideration and this for the chemical reactions :

n
du =Tds — pdv + z wdn; —Td;s
i=1
n
dH = Tds + vdp +

l
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n
dA = —sdt + vdp + z wdn; —Td;s

1=1

n
dG = —sdT + vdp + z w;dn; — Td;s

=1

Suite: potential

Chemical potential of Gibbs free energy (G) is the partial
molar free energy (G;)

G
== (5)
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G = Zp-ini

Chemical potential of Helmholtz free energy (A) is

W =A4; = (a—F) IS the partial molar free energy
6ni Tv

The chemical potential of internal energy (u) is the partial
molar internal energy u;

B _(E)u)
Hi = U; = an, o

The chemical of enthalpy H is the partial molar enthalpy H;

_y _<6H)
W = Hf; = on; o

Usually A and G are used to calculate ‘U; because it is
possible to control the temperature and the pressure (G =
G, T)and A = A(v,T)

Chapter 02:Thermodynamic of pure species

Pure substance: is a substance with homogenous and stable
chemical composition. For example liquid water, a mixter of
ice/water or water/vapor. Also, the air is a pure substance.

All pure substances can be a solid, liquid or gas. A solid
substance has different allotropic forms. For example, carbon
and diamant.



Variance of a system (¢): is it defined with the following
equation:

p=c+2-F

Where:

C: is number of constituent;
F: is number of phases

Ifc=1,F=1 = ¢ = 2;s0we need two variables to
describe the system

Ifc=1,F =2 = ¢ =1, s0we need just one variable to
describe the system

Ifc=1,F =3 = ¢ = 0; all variables are constants

Example heating ice from (-18°c to 20°c) the temperature
increase from 18°c the ice begin to melt and the temperature
remains constant. At this point the liquid temperature begin
to rise.

In this case, we have two phases and one constant (water), in
thiscasec = 1,F =2 ,¢p = 1 we can describe the system
using only one variable (temperature)

A
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The saturated temperature (the boiling point)
It increases as pressure increases

Platting the saturation pressure as a function of
saturation temperature in the T-p plane. This is the So-
called vapor pressure curve.
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Ideal gas: for ideal gases, we have PV = nRT

The calorie equation is given on form: u = u(T)

We can specify h for ideal gas
H=u+PV=H=u(T)+RT (1)

Thus the enthalpy of an ideal gas is a function of T only

OH
AH = (C,AT) = (a_T)p = C,(T)

dH = C,dT

Au = (C,AT), = (g—;) = ¢, (T)

du = C,dT

(1) > H =u(T) +RT

dH = du(T) + RdT

C,(T)4T = Cy(T)4T + RdT

Cp(T) = Cy(T) =R

If we have a mixture of two ideal gases A and B

The pressure of the mixture equal to P, where P = P, + Py



Pa=(-"2-).P and Py = (—2).P

na+ng nat+ng

Ny
%= ()
ny + ng

Xa Is the molar ratio of A in the mixture

Calorically perfect:

A calorically perfect gas has constant specific heat

du T
ﬁzc‘/ﬁu:j Cvdt

(2)=u+PV =uy+C, Ty +PV
u+ PV =H; PV =RT
H =uy+ C,T —C,Ty + RT + RT, — RT,
H =uy+ RTy + (C, + R)T — (C,T, + RT,)
uy,+RT, =H, ; (C,+R) = Cp s (C,Ty + RTy) = CpT,
H = Hy+ C,T — C,T,
H(T) = Hy + C,(T — Tp)
Calorically imperfect gas:
u=u(T)
Cy = Cy(T)
H = H(T)



C, = C,(T)

T

u(T) = uy +j C,(T)dT
To
And
T
H(T) = H, +j Cp(T)dT
To
Real gases:

A real gases have repulsive and attractive forces between
molecules at low molecular volume and intermolecular forces
can often be neglected

PV—RT[1+B+ “ 4 ]
- v
v=v=1

n
PV=RT[1+ BPCP? + -]
C and B are coefficients
Vander Waals equation:
a —
(P +W)(V—b) — RT
V =V, moleculor volume

P + = Internal pressure
V2

(V —b) Excluded volume



Fugality: the fugality function can define phase equilibrium.
For an ideal gas, the fugality of a species in an ideal gas
mixture is equal to its partial pressure

% =1 (For pure species i);

y% = 1 (For species i in mixtures)

Where Fi represent the fugality of species i in a mixture and
y; 1S the gas phase fraction of species i.

PV;
NnRT

=1andﬂ=1
1%

PV K :<6_F> 4
nRT p oP/ry, nRT
For a mixture, the departure function of Gibbs energy, which
is the difference between the partial Gibbs energy in the real
state and in an ideal gas state, is related to the fugality
function by u; — u;;40.q1 = Au(real — ideal)

i
yip°
From the equation above, we define the fugality coefficient
of species i, £; in a mixture by:

o —_ —_— —_—
Gi -G i = Ujreal = Ujideal = RTIn

Li_

Fi {yi = 1if we have one species
yip’

y; # 1if we have a mixture

L; is a measure of deviation from the ideal gas mixture
behavior, and unity an ideal gas mixture.



The fugality coefficient may be determined from

compressibility factor Z = (%) data at constant temperature

and composition chemical potential for ideal gas:

P
u; = u°+ RTIn
‘ (y-p°)

l

The joule expansion
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(a) A gas is kept to one part of vessel by a partition, the other
part being evacuated.

(b) The partition is removed and the gas expands irreversibly
to fill the whole vessel of complete isolation.

Joule expansion is also called a “free expansion”.
Since dQ = dw = 0; we have du = 0 or u = constant.
du = Tds — pdv

<6u) _T<OS> _c
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du=Tds —pdv =0



Tds = pdv

A —PA
S = T 1%
V2
As=j de
V1 T
For the perfect gas this becomes PV = nRT
P R
T V
V2
V2
As = j—dv=Rln—
Vi
41
As = Rlog 2
S = Rlog .

The joule — Kelvin expansion (Joule-Thomson)

A gas is forced through a porous plug or a throttle valve
under conditions of thermal isolation from the surround dings

> —H P1 E\\\ﬁ P2 — >

In passing through the plug, the gas expands and the pressure
drops from P1 to P2.

The pressure on either side are kept constant



BUT:

dh = Tds + vdp

(7), =7 (), =¢

oT/ p or)p, F

oh =T(a—5) + Vo (1
T aP T

(57)
(Z_S)T _ (S—Z)P et e et e (2)
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Thermodynamic properties of condensed phases

A condensed phase consists of a liquid (very poorly
compressible fluid) or a solid (quasi-incompressible) under
the usual conditions of temperature and pressure and taking
into account the quasi-constant Vo nature of the condensed
phase.

The  thermo-elastic coefficient can be  written
isobaric.Expansion.Coefficient:

_1<0V>
“=v,\at/,

Isothermal compressibility coefficient



B -1 (GV)
VO ap T
A condensed phase is slightly expandable (¢ = 0) and not
very compressible (f = 0)

dv = (6_1)) dT + (a_v> dp
T/, ap/ .
dv = avydT — fvydp
dv = vy(adT — Bdp) = 0
Chapter 03 Physical equilibrium
Phase equilibrium

A system of two phases is in equilibrium, if it has the
following conditions:

T* =TF =T; ethermal equilibrium B
P% = pf = p; dynamic equilibrium TP, pP
G = Gy chemical equilibrium | @

T: Temperature % p"

P: Pressure
G: Free enthalpy

Taking this reaction a = f

AG = G,ﬁ N G,fl(p’ﬂ = 0 in the equilibrium where p

= F(T)



The clapeyron equation:

- Under isothermal and isotonic conditions various
phases of a compound can coexist at phase equilibrium.
- A compound can be at various phases under suitable
pressure and temperature.
- Chemical potentials of a species in vapor and liquid
phases are equal at phase equilibrium must be zero.

Upap (T, 0) = w4 (T, p)
vap:

lig:p

uq(T,p) = ug (T, p)

ou, ou, dug dug
(ﬁ)ﬂ”(%)pd?"(ﬁ Y
Uy = G_a

dG = vdp — Sdt

(66‘) ¢ oG o oG 7

D — = — > | — = — =  — =

T/, oT « dp «
p T

Gq = G_B

—S,dT + V,,dp = —S,dT + Vzdp
—S,dT + SgdT = Vgdp — V,dp
(Sp — S)dT = (Vg — Vp)dp



A Hyg, >0 ¢ always
AHg,, >0

Clausius-clapeyron equation
Solid-Vapor equilibrium

dP . ms_g n+1

ar  T(vg-Vs) Jxtdx = ):1+1 te
T—2+1 1
241 T
Solid-Liquid equilibrium
dP AH,
dT ~ T(v, - V,)

Liquid-Vapor equilibrium n=1 mole

aT ~ T(V4-VL) Vg > V>

.

= ,»>V, 1V ~V,

T~2dt =



dP_EP dT_[ 1]
dT ~ RTZ' T2

T
dP de 1P2 —-AH 1 1
—=——.dT > = ———
P ~ RT? "= R G

Claussuis-clapeyron equation
Phase equilibration of binary mixtures:

- Many minerals are homogenous solid binary mixtures
such as mercury and silver;

- Alocohol is usually found in association with water,
forming a homogenous binary mixture.

Dilutes mixture:

The chemical potential of a solute is given by the following
expression:

u; =u°y +RTIn (1 —x)
u, =u’, +RTlnx

The coexistence of two phases in binary mixture is described
by a linear segment of g(p, x)or g'(T, x).

Thermodynamic equilibrium:

For a mixture of two components, the condition of
thermodynamic equilibrium is:



TA =TB

PA = PB
ulA = u1B
uZAuZB

= ul and u2 are chemical potentials of components 1 and 2

A and B are two phases for example (liquiduap)

Condensation and boiling lines:

P (upa)

60

50 | | | | | |
water - 04 x 0.6 0.8 r%ethanol 0.2 0.4

Water and methol mixture

dG = Tds — pdv + u;dN; + u,dN,

N1 and Nzare numbers of moles of components 1 and 2

_0G. G G

S—a—G' U =—u, = —
- 17 an,""2%2 7 an,

v —_— —_—
or’ oP’

Application of thermodynamic equilibration for distillation

Process

0.35



It is used for determining the number of theorical plates in
distillation columns

Chapter 04 Chemical equilibrium

The condition of chemical equilibration is dG=0

K
dG = —=SdT + vdp + Z u;dn; =0

i=1
= z uidnl- =0

u; =u°; + RTlogey

— L;

" Po

L; is fugalitycoefficient

Qi

The standard chemical potential of Gibbs is given by
the following equation :

Ap® = AG°, = RTInK,
where:

Kals the equilibrium constant.

R
ke=| | (0D

Diis the stocheometric coefficient of component i

From the previous equations, we can deduce that :



AG°r = —RT Ink, = AH°, — TAS®,
AS°,  AH°R
R RT

Ink, =
Example ;

3 1
EHZ +EN2 == NH3

aA + bB—cC
d
_ #g.#D

“pa g




