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INTRODUCTION
[1]

any process or system can be represented by the model shown in
the Figure bellow :

Controllable factors
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Uncontrollable factors

Results = Out put =response (Y)



Chaptarl
Introduction
to understand what happens to a process when you
change certain input factors, you have to change the
factors. In other words, you need to conduct
experiments on the system. Each experimental run is a
test. More formally, we can define an experiment as a
test or series of runs in which changes are made to the
input variables of a process or system so that we may
observe and identify the reasons for changes that may
be observed in the output response.



DOE

Experimental Design is a collection of
experiments or runs that is planned in
advance of the actual execution. The
particular runs selected in an experimental
design will depend upon the purpose of the
design.



What is design of experience?

We may want to determine which input variables are
responsible for the observed changes in the response,
develop a model relating the response to the important
input variables and to use this model for process or system
improvement or other decision-making.

Response surface [Book 5]

Response surface methodology, or RSM, is a collection of
mathematical and statistical techniques useful for the modeling
and analysis of problems in which a response of interest is
influenced by several variables and the objective is to optimize
this response. For example, suppose that a chemical engineer
wishes to find the levels of temperature (x1 ) and pressure (x2
) that maximize the yield (y) of a process. The process yield is a
function of the levels of temperature and pressure, say

v = flx, x) te



where :

€ : represents the noise or error observed in the responsey.

If we denote the expected response by E(y) = f(x1, x2 ) = n, then
the surface represented by n=1f(x1, x2 ) is called a response
surface.

Figure :

70

60

50

Expocted vield Flvl = n

40

100

Temperature {°C) 160 20 Pressure (psi)
10

Representation of the response surface graphically (response surface plot )



Usually, a low-order polynomial is employed :
1. first-order model

v=P00a + By + Baxa + -+ Byxy + €

2. second-order model

v=PBo+ X Bix; + 2 Buxi + 22 Byxx; + €
| | f )

Designs for fitting response surfaces are called response surface
designs

The Method of Steepest Ascent : is a procedure for moving in
the direction of the maximum increase in the response. Of
course, if minimization is desired, then we call this technique the
method of steepest descent. The fitted first-order model is :

V=B, + X B,



Region of fitted Path of steepest ascent

first-order response

¥=40




Factors[7]
Independent Variable (Factor or Treatment Factor ) is one
of the variables under study that is being controlled at or
near some target value, or level, during any given
experiment. The level is being changed in some systematic
way from run to run in order to determine what effect it
has on the response(s). We have two kind of factors:

A.real factors
B.coded factors

Coding the Data

Z1 =X1- (X low + X high )/2

(X high — X low )/2

Example: the factor of temperature takes two levels 50 °C and 100°C. The coded
factors of this two levels are:
ol —75H 100 — 75

= —1 't = +1
50/2 ' 50/2




Interaction : it is joint effect between two factors, the effect
of one factor upon the response will differ depending on the
level of the other factor.
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Weak interaction between X1 and X2



Simple linear regression [8]

DOE application in the future can be predicted with linear
regression model. A general multiple linear regression
model with k repressor variables is express as:

y=PBo+ B1x1 + faxy + -+ Prxy + £

where, Bj,Bj,j=0.1, 2, ..., k, are regression coefficients

Factorial design 2 power K [1]

is that of k factors, each at only two levels. These levels may
be quantitative, such as two values of temperature, pressure,
or time; or they may be qualitative, such as two machines,
two operators, the “high” and “low” levels of a factor, or
perhaps the presence and absence of a factor



Determination of effects

is the change in the response that is caused by a change in a
factor or independent variable. the effect can be estimated
by calculating it from the observed response data.

example

Suppose that we are interested in improving the yield of a
chemical process. We know from the results of a
characterization experiment that the two most important
process variables that influence the yield are operating
temperature and reaction time. The process currently runs at
145°F and 2.1 hours of reaction time, producing yields of
around 80 percent. the contour lines for yields of 60, 70, 80, 90,
and 95 percent.

reaction time [1,5-2,5]

Temperature [140 -150]



Matrix design with real factors

ame  ltomportwe v

1,5 140 60
2,5 140 70
1,5 150 90
2,5 150 95

Matrix design with coded factors

ime  tomperare |y

-1 -1 60
+1 -1 70
-1 +1 90
+1 +1 95

E = average Effect
ET=-60-70+90+95/4 = 13,75

global effect
Et = -60+70-90+95/4 = 3,75

Gobal effect = average effect * 2



graphical presentation of effects
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Determination of interaction type

ume  tomperare el

-1 -1 60
+1 -1 70
-1 +1 90
+1 +1 95

Determination of interactions and effects

interaction plot
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Plot interpretation

Investigation: exam (FLS, comp.=1)
Effects for mpp

pol
tpou
1T

pou*T®

M=2 R2=0559 R2 Adj=0.9%0
DF=1 Q2=0468 R5D=01308 Conf. lev.=095

Each factor has a negative sign, that means this factor decrease the response and
vice versa.

Law
T
0.00
-1.00

-1 -200




Application TP 01 : full factorial 2power 2

Suppose that we are interested in improving the yield of a chemical
process. We know from the results of a characterization experiment that
the two most important process variables that influence the yield are
operating temperature and reaction time. The process currently runs at
145°F and 2.1 hours of reaction time, producing yields of around 80
percent. the contour lines for yields of 60, 70, 80, 90, and 95 percent.

reaction time [1,5-2,5]

Temperature [140 -150]

1- determine the effects of each factor

2- give the interaction between the factors

3- write the mathematical model

A- for first order

B- for second order



Determination of effects in case of three factors
determination of interactions in case of three factors

Tp 2 : full factorial 2 power 3



Chaptar 2
model validation



Introduction

Model validation is defined as the process of
determining the degree to which a model is an
accurate representation of the real world system. The
model is valid means that it behaves similar to the real
world system for any effective input. The increasing of
validation experiments will enhance the confidence in
using the computational model as well as reduce the
risks of using an invalid model to some extent.



Experimental errors [1]

the variance among experimental units treated alike, often
symbolized as 02 or oe 2

suppose that y1, y2, . .., yn represents a sample. Then the
sample mean

and the sample variance S2

Y (vi — V)

o, L

- = |
S

n— |

the sample variance S2 is a point estimator of the population
variance 02 .



Example :

me lmperre yed

-1 -1 11,1

+1 -1 12,6

-1 +1 10,4

+1 +1 11,9

sample mean
7= %(11.1 + 12,6 + 104+ 11.9) = 11,5 sample variance
— ﬂ — O1:

11,1 -11,5=-0,4 52= 9133
126 -11,5=+1,1
104~-11,5=~-1,1 sample standard deviation
11,9-11,5=04 éaart-type = 4/0,9133 = 0,9557 = 0,96

(-0,4)* + (1,12 + (=1,1)2 + (0,4)* = +0,16 + 1,21 + 1,21 + 0,16 = +2,74

sample standard deviation, is used as a measure of dispersion



L. e =32
S= 0v."-'.-.'-'“'a.'.'.'(.‘.'l - jﬁ z (,_}': —_}')
4 ! |

The Test of Significance

v'State the Research Hypothesis.

v'State the Null Hypothesis (no effect).

v'Type I and Type II Errors. Select a probability of error level
(alpha level)

v'Chi Square Test. Calculate Chi Square. Degrees of freedom.

Distribution Tables. Interpret the results.
v'T-Test.



The Test of Significance : application

ame  ltompomtwre e

-1 -1 11,1
+1 -1 12,6
-1 +1 10,4
+1 +1 11,9

A company produce a mean yield of product A of 11,5% .
The decision maker in this company believes that the mean
yield could be 15%.

To do a test of significance:

-State the Research Hypothesis : it is possible to get the
mean yield equal to 15% (Ha : alternative hypothesis).

-State the Null Hypothesis HO (no etfect) : n=11,5%.
-Select probability of error (calculate P- Value):



Sample 11 ¥, ¥iges Py

Factor level 1

Z=(Y-n’)/(S/Vn)

Y : the mean sample (in this case the mean yield)

n°:15%

S : sample standard deviation

n : sample size

P- value : is the probability of obtaining a sample (more extreme) that the ones
observed in your data assuming HO is true.

Application : Z = (11.5 -15)/ (0.96/v4) = -7,29



Anova table :
The ANOVA table has rows for every term in the model and columns
for source squares, degrees of freedom (DF), mean squares, and F-
statistics.
SS: sum of square; MS : sample variance ; SD : sample standard
deviation ; application for the same example using MODDE

1 -] [ ] [ B [ I [ 2
i yield DF  SS MS F p | 'SD
2 (vanance)
3 Total 4 531,74 132,935
4 Constant 1 529 529
5
6 | Total Corrected 3 2,73999 ' 091333 0,955683
7 Regression 3 273999  0,91333 - 0,955683
8 Residual 0 0 0
9
10 Lack of Fit 0
1 (Model Error)
12 Pure Error 0 -
13 | (Replicate Error)
14
15 N=4 Q2= - Cond. no. = 1,0000
16 DF=0 = - Y-miss= 0
17 R2 Adj = - RSD = -



Correlation coefficient

R2 is the portion of the total variation in Y that is explained
away by using the x information in a regression. R2 is always
between 0 and 1. An R2 of 0 means that x provides no
information about y. An R2 of 1 means that use of x information
allows perfect prediction of y.

R? explained variability  SS;; — SS;¢s
1 - p—

total variability o T

R2 = sum of square calculated from the model/sum of square calculated from experimental data



Example :

y =11,55-0,1x, - 6,2875x, - 3425x; - 2,075,
+0,6375x)x) + 0,325x,%; + 0,35x,x; + 1,5875x,; = 1,125, + 0,63,



sum of square calculated from experimental data

26,1 - 11,55 = +14,55
22,2 - 11,55 = +10,65
10,1 -11,55=-1,45
0,5-11,55=-11,05
1,7-11,55=-9,85

~] ‘N

(14,552 + (10.65)% + ... + (=11,05)% + (-9,85)2
=4+211,7025 +113,422S + ... + 122,102 5 + 97,022 5 = + 975,72

sum of square calculated from the model

25,825 - 11,55 =+14,275
23,0-11,55=+11,45
11,025 - 11,55 =-0,525

-0,375-11,55=-11,925
2.()5 - 1 1.35 - —).S

(14,275)% + (11,45)* + ... + (=11,925) + (=9,5)?
=+ 203,775 625 + 131,102 5 + ... + 142,205 625 + 90,25 = + 965,30

R2 =965.30/975.72 = 0.989



Degree of freedom

The number of degrees of freedom of a sum of squares is
equal to the number of independent elements in that sum
of squares.

For example, diapo 27

single degree of freedom =n -1



Confidence interval

The confidence interval (CI) expresses the degree of uncertainty
around a certain effect, it give an idea about the power of a study.

3 Where :
Cl=Y+xz-. = Y : is the mean value
lue Z. : is Z value for confidence level
S : standard deviation
n : sample size

80% 1.28
90% 1.645
95% 1.96
98% 2.33

99% 2.58



N, a?

Sample 11y, Y490 ¥y,
Factor level 1

The range between the lower and upper limits
.V'istlmﬁ:econﬁd-ulntﬂval




Chaptar 3 : Fractional factorial
design 2 power (k—-p)



INTRODUCTION

Suppose there are k factors (A,B,...,J,K) in an experiment. All
possible factorial effects include

effects of order 1: A, B, ..., K (main effects)
effects of order 2: AB, AC, ..., JK (2-factor interactions)

— Lower order effects are more likely to be important than higher
order effects.

— Effects of the same order are equally likely to be important.
Number of runs required for full factorial grows quickly!!!
Consider 2 power k design

—Ifk=7 - 128 runs required

Construction and Analysis of the One-Half Fraction

A one-half fraction of the 2power k design of the highest resolution
may be constructed by writing down a basic design consisting of the
runs for a full 2k1 factorial



EXAMPLE

Chemists are trying to determine the tellurium
(Te) content in seawater. But the nature and
concentration of other metals distort the
measurements. The content in tellurium can
be either too high or too low depending on
the other metals and their concentration. The
disruptive metals could be sodium (Na),
potassium (K) and calcium (Ca).



Basic matrix of a plan 2 power3.

Level -1

LEVELO

Level +1
factors
(ng/ml) (ng/ml) (ng/ml)
Concentration Na (1) 2,5 25 250
Concentration K (2) 2,5 25 250
Concentration Ca (3) 2,5 25 250




MATRIX DESIGN 2 power 3

A (-1, +1)

B (-2, +2)

C (-4, +4)

+

+

o |N|lo|ln|D|lw|[N |




2 power 4

A (-1, +1) B (-2, +2) C (-4, +4) D (-8,+8)
1 - - - .
2 + - - -
3 - + - -
4 + + - -
5 - - + -
6 + - + -
7 - + + -
8 + + + -
9 - - - +
10 + - - +
11 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +




